Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Euro Surveill ; 29(3)2024 Jan.
Article in English | MEDLINE | ID: mdl-38240061

ABSTRACT

We conducted a multicentre hospital-based test-negative case-control study to measure the effectiveness of adapted bivalent COVID-19 mRNA vaccines against PCR-confirmed SARS-CoV-2 infection during the Omicron XBB lineage-predominant period in patients aged ≥ 60 years with severe acute respiratory infection from five countries in Europe. Bivalent vaccines provided short-term additional protection compared with those vaccinated > 6 months before the campaign: from 80% (95% CI: 50 to 94) for 14-89 days post-vaccination, 15% (95% CI: -12 to 35) at 90-179 days, and lower to no effect thereafter.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Case-Control Studies , COVID-19/prevention & control , SARS-CoV-2/genetics , Hospitalization , Europe/epidemiology , RNA, Messenger
2.
Vaccines (Basel) ; 11(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38140188

ABSTRACT

Underserved and hard-to-reach population groups are under-represented in vaccine trials. Thus, we aimed to identify the challenges of vaccine trial participation of these groups in member countries of the VACCELERATE network. Seventeen National Coordinators (NC), each representing their respective country (15 European countries, Israel, and Turkey), completed an online survey. From 15 eligible groups, those that were more frequently declared underserved/hard-to-reach in vaccine research were ethnic minorities (76.5%), persons experiencing homelessness (70.6%), illegal workers and refugees (64.7%, each). When prioritization for education on vaccine trials was considered, ethnic groups, migrants, and immigrants (5/17, 29.4%) were the groups most frequently identified by the NC as top targets. The most prominent barriers in vaccine trial participation affecting all groups were low levels of health literacy, reluctance to participate in trials due to engagement level, and low levels of trust in vaccines/vaccinations. This study highlighted population groups considered underserved/hard-to-reach in countries contained within the European region, and the respective barriers these groups face when participating in clinical studies. Our findings aid with the design of tailored interventions (within-and across-countries of the European region) and with the development of strategies to overcome major barriers in phase 2 and phase 3 vaccine trial participation.

3.
Euro Surveill ; 28(47)2023 11.
Article in English | MEDLINE | ID: mdl-37997666

ABSTRACT

IntroductionTwo large multicentre European hospital networks have estimated vaccine effectiveness (VE) against COVID-19 since 2021.AimWe aimed to measure VE against PCR-confirmed SARS-CoV-2 in hospitalised severe acute respiratory illness (SARI) patients ≥ 20 years, combining data from these networks during Alpha (March-June)- and Delta (June-December)-dominant periods, 2021.MethodsForty-six participating hospitals across 14 countries follow a similar generic protocol using the test-negative case-control design. We defined complete primary series vaccination (PSV) as two doses of a two-dose or one of a single-dose vaccine ≥ 14 days before onset.ResultsWe included 1,087 cases (538 controls) and 1,669 cases (1,442 controls) in the Alpha- and Delta-dominant periods, respectively. During the Alpha period, VE against hospitalisation with SARS-CoV2 for complete Comirnaty PSV was 85% (95% CI: 69-92) overall and 75% (95% CI: 42-90) in those aged ≥ 80 years. During the Delta period, among SARI patients ≥ 20 years with symptom onset ≥ 150 days from last PSV dose, VE for complete Comirnaty PSV was 54% (95% CI: 18-74). Among those receiving Comirnaty PSV and mRNA booster (any product) ≥ 150 days after last PSV dose, VE was 91% (95% CI: 57-98). In time-since-vaccination analysis, complete all-product PSV VE was > 90% in those with their last dose < 90 days before onset; ≥ 70% in those 90-179 days before onset.ConclusionsOur results from this EU multi-country hospital setting showed that VE for complete PSV alone was higher in the Alpha- than the Delta-dominant period, and addition of a first booster dose during the latter period increased VE to over 90%.


Subject(s)
COVID-19 , Humans , Adult , COVID-19/epidemiology , COVID-19/prevention & control , BNT162 Vaccine , RNA, Viral , SARS-CoV-2 , Vaccine Efficacy , Hospitalization , Europe/epidemiology
4.
Euro Surveill ; 28(47)2023 11.
Article in English | MEDLINE | ID: mdl-37997665

ABSTRACT

IntroductionThe I-MOVE-COVID-19 and VEBIS hospital networks have been measuring COVID-19 vaccine effectiveness (VE) in participating European countries since early 2021.AimWe aimed to measure VE against PCR-confirmed SARS-CoV-2 in patients ≥ 20 years hospitalised with severe acute respiratory infection (SARI) from December 2021 to July 2022 (Omicron-dominant period).MethodsIn both networks, 46 hospitals (13 countries) follow a similar test-negative case-control protocol. We defined complete primary series vaccination (PSV) and first booster dose vaccination as last dose of either vaccine received ≥ 14 days before symptom onset (stratifying first booster into received < 150 and ≥ 150 days after last PSV dose). We measured VE overall, by vaccine category/product, age group and time since first mRNA booster dose, adjusting by site as a fixed effect, and by swab date, age, sex, and presence/absence of at least one commonly collected chronic condition.ResultsWe included 2,779 cases and 2,362 controls. The VE of all vaccine products combined against hospitalisation for laboratory-confirmed SARS-CoV-2 was 43% (95% CI: 29-54) for complete PSV (with last dose received ≥ 150 days before onset), while it was 59% (95% CI: 51-66) after addition of one booster dose. The VE was 85% (95% CI: 78-89), 70% (95% CI: 61-77) and 36% (95% CI: 17-51) for those with onset 14-59 days, 60-119 days and 120-179 days after booster vaccination, respectively.ConclusionsOur results suggest that, during the Omicron period, observed VE against SARI hospitalisation improved with first mRNA booster dose, particularly for those having symptom onset < 120 days after first booster dose.


Subject(s)
COVID-19 , Pneumonia , Humans , Adult , COVID-19/prevention & control , COVID-19 Vaccines , Vaccine Efficacy , SARS-CoV-2 , Hospitalization , Europe/epidemiology , RNA, Messenger
5.
BMJ Open ; 13(7): e071649, 2023 07 30.
Article in English | MEDLINE | ID: mdl-37518089

ABSTRACT

INTRODUCTION: Colistin is a lipopeptide antibiotic administered as an inactive prodrug-colistin methanesulfonate (CMS). Colistin is a drug with a narrow therapeutic window; the limiting factors are mainly nephrotoxicity and neurotoxicity, dependent on plasma concentrations. The number of patients with infections caused by multidrug-resistant Gram-negative bacteria sensitive only to colistin and the number of patients requiring extracorporeal membrane oxygenation (ECMO) support for severe respiratory failure increased significantly in association with COVID-19-induced infections. ECMO can generally affect the pharmacokinetics of drugs by creating a new compartment. METHODS AND ANALYSIS: The COL-ECMO2022 study is a prospective, non-randomised, single-centre, phase IV pharmacokinetic clinical trial designed to assess the influence of ECMO on the pharmacokinetics of colistin and CMS. Up to 30 patients treated with colistin will be included in the study and assigned to one of two arms, depending on the presence/absence of ECMO. All study participants will receive standard CMS dose intravenously. The plasma concentrations of colistin and CMS taken at defined intervals will be assessed by high-performance liquid chromatography-mass spectrometry. Patients will participate in the clinical trial for a maximum of three monitored dosing intervals. A population pharmacokinetic model will be developed to assess the influence of ECMO on pharmacokinetics. A difference greater than 25% is considered clinically significant. ETHICS AND DISSEMINATION: The study has been approved by the Ethics Committee of St. Anne's University Hospital Brno (Number 10ML/2022-AM). Related manuscripts will be submitted to peer-review journals. TRIAL REGISTRATION NUMBERS: EudraCT Number 2022-000291-19; NCT05542446.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Humans , Colistin/therapeutic use , Critical Illness/therapy , Prospective Studies , Anti-Bacterial Agents/pharmacokinetics
6.
Vaccine ; 41(26): 3915-3922, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37210309

ABSTRACT

BACKGROUND: The inconsistent European vaccine trial landscape rendered the continent of limited interest for vaccine developers. The VACCELERATE consortium created a network of capable clinical trial sites throughout Europe. VACCELERATE identifies and provides access to state-of-the-art vaccine trial sites to accelerate clinical development of vaccines. METHODS: Login details for the VACCELERATE Site Network (vaccelerate.eu/site-network/) questionnaire can be obtained after sending an email to. Interested sites provide basic information, such as contact details, affiliation with infectious disease networks, main area of expertise, previous vaccine trial experience, site infrastructure and preferred vaccine trial settings. In addition, sites can recommend other clinical researchers for registration in the network. If directly requested by a sponsor or sponsor representative, the VACCELERATE Site Network pre-selects vaccine trial sites and shares basic study characteristics provided by the sponsor. Interested sites provide feedback with short surveys and feasibility questionnaires developed by VACCELERATE and are connected with the sponsor to initiate the site selection process. RESULTS: As of April 2023, 481 sites from 39 European countries have registered in the VACCELERATE Site Network. Of these, 137 (28.5 %) sites have previous experience conducting phase I trials, 259 (53.8 %) with phase II, 340 (70.7 %) with phase III, and 205 (42.6 %) with phase IV trials, respectively. Infectious diseases were reported as main area of expertise by 274 sites (57.0 %), followed by any kind of immunosuppression by 141 (29.3 %) sites. Numbers are super additive as sites may report clinical trial experience in several indications. Two hundred and thirty-one (47.0 %) sites have the expertise and capacity to enrol paediatric populations and 391 (79.6 %) adult populations. Since its launch in October 2020, the VACCELERATE Site Network has been used 21 times for academic and industry trials, mostly interventional studies, focusing on different pathogens such as fungi, monkeypox virus, Orthomyxoviridae/influenza viruses, SARS-CoV-2, or Streptococcus pneumoniae/pneumococcus. CONCLUSIONS: The VACCELERATE Site Network enables a constantly updated Europe-wide mapping of experienced clinical sites interested in executing vaccine trials. The network is already in use as a rapid-turnaround single contact point for the identification of vaccine trials sites in Europe.


Subject(s)
COVID-19 , Orthomyxoviridae , Vaccines , Adult , Child , Humans , SARS-CoV-2 , Europe
7.
JMIR Public Health Surveill ; 9: e44491, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36878478

ABSTRACT

BACKGROUND: The pan-European VACCELERATE network aims to implement the first transnational harmonized and sustainable vaccine trial Volunteer Registry, being a single entry point for potential volunteers of large-scale vaccine trials across Europe. This work exhibits a set of harmonized vaccine trial-related educational and promotional tools for the general public, designed and disseminated by the pan-European VACCELERATE network. OBJECTIVE: This study primarily aimed to design and develop a standard toolkit to increase positive attitudes and access to trustworthy information for better access and increased recruitment to vaccine trials for the public. More specifically, the produced tools are focused on inclusiveness and equity, and are targeting different population groups, including underserved ones, as potential volunteers for the VACCELERATE Volunteer Registry (older individuals, migrants, children, and adolescents). The promotional and educational material is aligned with the main objectives of the Volunteer Registry to increase public literacy and awareness regarding vaccine-related clinical research or trials and trial participation, including informed consent and legal issues, side effects, and frequently asked questions regarding vaccine trial design. METHODS: Tools were developed per the aims and principles of the VACCELERATE project, focusing on trial inclusiveness and equity, and are adjusted to local country-wise requirements to improve public health communication. The produced tools are selected based on the cognitive theory, inclusiveness, and equity of differently aged and underrepresented groups, and standardized material from several official trustworthy sources (eg, COVID-19 Vaccines Global Access; the European Centre for Disease Prevention and Control; the European Patients' Academy on Therapeutic Innovation; Gavi, the Vaccine Alliance; and the World Health Organization). A team of multidisciplinary specialists (infectious diseases, vaccine research, medicine, and education) edited and reviewed the subtitles and scripts of the educational videos, extended brochures, interactive cards, and puzzles. Graphic designers selected the color palette, audio settings, and dubbing for the video story-tales and implemented QR codes. RESULTS: This study presents the first set of harmonized promotional and educational materials and tools (ie, educational cards, educational and promotional videos, extended brochures, flyers, posters, and puzzles) for vaccine clinical research (eg, COVID-19 vaccines). These tools inform the public about possible benefits and disadvantages of trial participation and build confidence among participants about the safety and efficacy of COVID-19 vaccines and the health care system. This material has been translated into several languages and is intended to be freely and easily accessible to facilitate dissemination among VACCELERATE network participant countries and the European and global scientific, industrial, and public community. CONCLUSIONS: The produced material could help fill knowledge gaps of health care personnel, providing the appropriate future patient education for vaccine trials, and tackling vaccine hesitancy and parents' concerns for potential participation of children in vaccine trials.


Subject(s)
COVID-19 , Health Communication , Vaccines , Child , Adolescent , Humans , Aged , COVID-19/prevention & control , COVID-19 Vaccines , Europe
8.
Polymers (Basel) ; 14(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365626

ABSTRACT

The growing demand for polymer composites and their widespread use is inevitably accompanied by the need to know their degradation behavior over a sufficiently long period of time. This study focuses on commercial glass fiber rovings, which were stored in the indoor environment for up to 11 years. Fibers with different storage times, from fresh up to the oldest, were used to produce unidirectional fiber-reinforced polyester composites that were characterized to determine their shear and flexural properties dependent on fiber storage time. A significant decrease in shear strength was observed throughout the aging of the fibers, down to a decrease of 33% for the oldest fibers. An important finding, however, was that the significant decrease in shear strength was only partially reflected in the flexural strength, which corresponded to a decrease of 18% for the oldest fibers at consistent flexural modulus.

9.
Trials ; 23(1): 783, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109818

ABSTRACT

BACKGROUND: Academic-sponsored trials for rare diseases face many challenges; the present paper identifies hurdles in the set-up of six multinational clinical trials for drug repurposing, as use cases. METHODS: Six academic-sponsored multinational trials aiming to generate knowledge on rare diseases drug repurposing were used as examples to identify problems in their set-up. Coordinating investigators leading these trials provided feedback on hurdles linked to study, country, and site set up, on the basis of pre-identified categories established through the analysis of previous peer-reviewed publications. RESULTS: Administrative burden and lack of harmonization for trial-site agreements were deemed as a major hurdle. Other main identified obstacles included the following: (1) complexity and restriction on the use of public funding, especially in a multinational set up, (2) drug supply, including procurement tendering rules and country-specific requirements for drug stability, and (3) lack of harmonization on regulatory requirements to get trial approvals. CONCLUSION: A better knowledge of the non-commercial clinical research landscape and its challenges and requirements is needed to make drugs-especially those with less commercial gain-accessible to rare diseases patients. Better information about existing resources like research infrastructures, clinical research programs, and counseling mechanisms is needed to support and guide clinicians through the many challenges associated to the set-up of academic-sponsored multinational trials.


Subject(s)
Drug Repositioning , Rare Diseases , Clinical Trials as Topic , Humans , Organizations , Rare Diseases/diagnosis , Rare Diseases/drug therapy
10.
Vaccine ; 40(31): 4090-4097, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35659449

ABSTRACT

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has evidenced the key role of vaccine design, obtention, production and administration to successfully fight against infectious diseases and to provide efficient remedies for the citizens. Although clinical trials were rapidly established during this pandemic, identifying suitable study subjects can be challenging. For this reason, the University Hospital Cologne established a volunteer registry for participation in clinical trials first in Germany, which has now been incorporated into the European VACCELERATE clinical trials network and grew to a European Volunteer Registry. As such, VACCELERATE's Volunteer Registry aims to become a common entry point for potential volunteers in future clinical trials in Europe. METHODS: Interested volunteers who would like to register for clinical trials in the VACCELERATE Volunteer Registry can access the registration questionnaire via http://www.vaccelerate.eu/volunteer-registry. Potential volunteers are requested to provide their current country and area of residence, contact information, including first and last name and e-mail address, age, gender, comorbidities, previous SARS-CoV-2 infection and vaccination status, and maximum distance willing to travel to a clinical trial site. The registry is open to both adults and children, complying with national legal consent requirements. RESULTS: As of May 2022, the questionnaire is available in 12 countries and 14 languages. Up to date, more than 36,000 volunteers have registered, mainly from Germany. Within the first year since its establishment, the VACCELERATE Volunteer Registry has matched more than 15,000 volunteers to clinical trials. The VACCELERATE Volunteer Registry will be launched in further European countries in the coming months. CONCLUSIONS: The VACCELERATE Volunteer Registry is an active single-entry point for European residents interested in COVID-19 clinical trials participation in 12 countries (i.e., Austria, Cyprus, Germany, Greece, Ireland, Lithuania, Norway, Portugal, Spain, Sweden and Turkey). To date, more than 15,000 registered individuals have been connected to clinical trials in Germany alone. The registry is currently in the implementation phase in 5 additional countries (i.e., Belgium, Czech Republic, Hungary, Israel and the Netherlands).


Subject(s)
COVID-19 , Clinical Trials as Topic , Patient Participation , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Child , Europe/epidemiology , Humans , Registries , Volunteers
11.
Front Neurol ; 13: 839163, 2022.
Article in English | MEDLINE | ID: mdl-35386419

ABSTRACT

Background: Vagal nerve stimulation (VNS) can be indicated in patients with drug-resistant epilepsy, who are not eligible for resective epilepsy surgery. In VNS therapy, the responder rate (i.e., percentage of subjects experiencing ≥50% seizure reduction) is ~50%. At the moment, there is no widely-accepted possibility to predict VNS efficacy in a particular patient based on pre-implantation data, which can lead to unnecessary surgery and improper allocation of financial resources. The principal aim of PRediction of vagal nerve stimulation EfficaCy In drug-reSistant Epilepsy (PRECISE) study is to verify the predictability of VNS efficacy by analysis of pre-implantation routine electroencephalogram (EEG). Methods: PRECISE is designed as a prospective multicentric study in which patients indicated to VNS therapy will be recruited. Patients will be classified as predicted responders vs. predicted non-responders using pre-implantation EEG analyses. After the first and second year of the study, the real-life outcome (responder vs. non-responder) will be determined. The real-life outcome and predicted outcome will be compared in terms of accuracy, specificity, and sensitivity. In the meantime, the patients will be managed according to the best clinical practice to obtain the best therapeutic response. The primary endpoint will be the accuracy of the statistical model for prediction of response to VNS therapy in terms of responders and non-responders. The secondary endpoint will be the quantification of differences in EEG power spectra (Relative Mean Power, %) between real-life responders and real-life non-responders to VNS therapy in drug-resistant epilepsy and the sensitivity and specificity of the model. Discussion: PRECISE relies on the results of our previous work, through which we developed a statistical classifier for VNS response (responders vs. non-responders) based on differences in EEG power spectra dynamics (Pre-X-Stim). Trial Registration: www.ClinicalTrials.gov, identifier: NCT04935567.

12.
Trials ; 21(1): 955, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33228772

ABSTRACT

BACKGROUND: Enteral nutrition is part of the treatment of critically ill patients. Administration of enteral nutrition may be associated with signs of intolerance, such as high gastric residual volumes, diarrhea, and vomiting. Clinical trials regarding the effects of the mode of administration of enteral nutrition on the occurrence of these complications have yielded conflicting results. This trial aims to investigate whether the mode of administration of enteral nutrition affects the time to reach nutritional targets, intolerance, and complications. METHODS: COINN is a randomized, monocentric study for critically ill adult patients receiving enteral nutrition. Patients will be randomly assigned to two groups receiving (1) continuous or (2) intermittent administration of enteral nutrition. Enhancement of enteral nutrition will depend on signs of tolerance, mainly the gastric residual volume. The primary outcome will be the time to reach the energetic target. Secondary outcomes will be the time to reach the protein target, tolerance, complications, hospital and ICU lengths of stay, and 28-day mortality. DISCUSSION: This trial aims to evaluate whether the mode of application of enteral nutrition affects the time to reach nutritional targets, signs of intolerance, and complications. TRIAL REGISTRATION: ClinicalTrials.gov NCT03573453. Registered on 29 June 2018.


Subject(s)
Critical Illness , Enteral Nutrition , Adult , Diarrhea , Enteral Nutrition/adverse effects , Humans , Intensive Care Units , Randomized Controlled Trials as Topic , Vomiting
13.
Front Oncol ; 9: 1034, 2019.
Article in English | MEDLINE | ID: mdl-31709173

ABSTRACT

Despite efforts to develop novel treatment strategies, refractory and relapsing sarcoma, and high-risk neuroblastoma continue to have poor prognoses and limited overall survival. Monocyte-derived dendritic cell (DC)-based anti-cancer immunotherapy represents a promising treatment modality in these neoplasias. A DC-based anti-cancer vaccine was evaluated for safety in an academic phase-I/II clinical trial for children, adolescents, and young adults with progressive, recurrent, or primarily metastatic high-risk tumors, mainly sarcomas and neuroblastomas. The DC vaccine was loaded with self-tumor antigens obtained from patient tumor tissue. DC vaccine quality was assessed in terms of DC yield, viability, immunophenotype, production of IL-12 and IL-10, and stimulation of allogenic donor T-cells and autologous T-cells in allo-MLR and auto-MLR, respectively. Here, we show that the outcome of the manufacture of DC-based vaccine is highly variable in terms of both DC yield and DC immunostimulatory properties. In 30% of cases, manufacturing resulted in a product that failed to meet medicinal product specifications and therefore was not released for administration to a patient. Focusing on the isolation of monocytes and the pharmacotherapy preceding monocyte harvest, we show that isolation of monocytes by elutriation is not superior to adherence on plastic in terms of DC yield, viability, or immunostimulatory capacity. Trial patients having undergone monocyte-interfering pharmacotherapy prior to monocyte harvest was associated with an impaired DC-based immunotherapy product outcome. Certain combinations of anti-cancer treatment resulted in a similar pattern of inadequate DC parameters, namely, a combination of temozolomide with irinotecan was associated with DCs showing poor maturation and decreased immunostimulatory features, and a combination of pazopanib, topotecan, and MTD-based cyclophosphamide was associated with poor monocyte differentiation and decreased DC immunostimulatory parameters. Searching for a surrogate marker predicting an adverse outcome of DC manufacture in the peripheral blood complete blood count prior to monocyte harvest, we observed an association between an increased number of immature granulocytes in peripheral blood and decreased potency of the DC-based product as quantified by allo-MLR. We conclude that the DC-manufacturing yield and the immunostimulatory quality of anti-cancer DC-based vaccines generated from the monocytes of patients were not influenced by the monocyte isolation modality but were detrimentally affected by the specific combination of anti-cancer agents used prior to monocyte harvest.

14.
Int J Pharm ; 478(1): 368-371, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25437112

ABSTRACT

PURPOSE: Drug administration through nasogastric tube (NGT) is a standard practice but the real amount of the delivered drug is unknown. Therefore, we designed a study to determine the losses of various dosage forms administered by different methods through NGT. METHODS: In vitro model was used. Five different administration methods (A-E) and six dosage forms (simple compressed tablets - T/S; film coated tablets - T/FC; enteric coated tablets - T/EC; capsules with powder filling - C/P; capsules containing extended release pellets - C/ER; capsules containing gastro-resistant pellets - C/GR) were investigated. Measurement was repeated six times for each drug-method combination. The overall losses were determined by gravimetry. In method A partial losses associated with each step of drug administration were also determined. RESULTS: Significant drug losses were measured (4-38%). Only methods A (crushing-beaker-syringe-water-NGT) and B (crushing-water-syringe-NGT) were suitable for administration of all tested dosage forms. Method B proved the most effective for all kinds of tablets and C/GR (p<0.05) and tended to be more effective also for C/ER (p=0.052) compared to method A. C/P showed minimal losses for both tested methods (B and E). Flushing of the drug through NGT causes major losses during drug administration compared to crushing and transfer (p<0.05). All methods for intact pellets (C-E) were found inappropriate for clinical practice due to NGT clogging. CONCLUSIONS: Choosing a suitable administration method can significantly affect the amount of drugs delivered through NGT.


Subject(s)
Intubation, Gastrointestinal , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Capsules/administration & dosage , Capsules/chemistry , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Tablets/administration & dosage , Tablets/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...